
SANDIA REPORT
SAND2015-0928  
Printed [Month] 2015

General Purpose Graphics Processing 
Unit Based High-Rate Rice 
Decompression and 
Reed-Solomon Decoding

Thomas A. Loughry

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico  87185 and Livermore, California  94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, 
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's 
National Nuclear Security Administration under contract DE-AC04-94AL85000.

 Approved for public release; further dissemination unlimited.



2

Issued by Sandia National Laboratories, operated for the United States Department of Energy by 
Sandia Corporation.

NOTICE:  This report was prepared as an account of work sponsored by an agency of the United 
States Government.  Neither the United States Government, nor any agency thereof, nor any of 
their employees, nor any of their contractors, subcontractors, or their employees, make any 
warranty, express or implied, or assume any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, product, or process disclosed, or 
represent that its use would not infringe privately owned rights. Reference herein to any specific 
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, 
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government, any agency thereof, or any of their contractors or subcontractors.  The 
views and opinions expressed herein do not necessarily state or reflect those of the United States 
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best 
available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN  37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd.
Springfield, VA  22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

mailto://reports@adonis.osti.gov
mailto://reports@adonis.osti.gov
http://www.osti.gov/bridge
mailto://orders@ntis.fedworld.gov
mailto://orders@ntis.fedworld.gov
http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online


3

SAND2015-0928
Unlimited Release

Printed [Month] 2015

General Purpose Graphics Processing Unit-
Based High-Rate Rice Decompression 

and Reed-Solomon Decoding

Thomas A. Loughry
Decision Support Systems

Sandia National Laboratories
P.O. Box 5800

Albuquerque, New Mexico  87185-MS0576

Abstract

As the volume of data acquired by space-based sensors increases, mission data 
compression/decompression and forward error correction code processing performance must 
likewise scale. This competency development effort was explored using the General Purpose 
Graphics Processing Unit (GPGPU) to accomplish high-rate Rice Decompression and high-rate 
Reed-Solomon (RS) decoding at the satellite mission ground station. Each algorithm was 
implemented and benchmarked on a single GPGPU. Distributed processing across one to four 
GPGPUs was also investigated. The results show that the GPGPU has considerable potential for 
performing satellite communication Data Signal Processing, with three times or better 
performance improvements and up to ten times reduction in cost over custom hardware, at least 
in the case of Rice Decompression and Reed-Solomon Decoding.  



4

ACKNOWLEDGMENTS

We would like to acknowledge John Feddema, Manager 05521, for his oversight and support in 
securing funding for this competency development, as well as Todd Jenkins of 05522 for his IT 
support in setting up the GPGPU/Server configurations.



5

CONTENTS
Acknowledgments............................................................................................................................4

1. Overview....................................................................................................................................9

2. Test Platforms ..........................................................................................................................11

3. General Purpose Graphics Processing Unit Programming Model...........................................15

4. Rice Compression/Decompression ..........................................................................................19
4.1. General Purpose Graphics Processing Unit Rice Decompression Algorithm ...............21
4.2. Rice Decompression Software, Central Processing Unit vs. General Purpose Graphics 
Processing Unit ........................................................................................................................23
4.3. Timing Analysis of the Basic Compute Unified Device Architecture Rice 
Decompression Algorithm.......................................................................................................25
4.4. Multiple Host Threads for Rice Decompression ...........................................................26
4.5. Multiple Host Threads, Multiple Devices for Rice Decompression..............................28

5. Reed-Solomon..........................................................................................................................33
5.1. Reed-Solomon Decoding Software vs. General Purpose Graphics Processing Unit.....34
5.2. Timing Analysis of the Basic CUDA RS Decoding Algorithm ....................................35
5.3. Multiple Host Threads, Multiple Devices for Reed-Solomon Decoding ......................36

6. Conclusion ...............................................................................................................................39

7. References................................................................................................................................41

FIGURES
Figure 1. Tesla S1070 ....................................................................................................................11

Figure 2. Tesla Configuration........................................................................................................11

Figure 3. Intel 7300 Chip Set.........................................................................................................12

Figure 4. Workstation Overview ...................................................................................................13

Figure 5. Host/Device Interface.....................................................................................................16

Figure 6. Rice Compression Algorithm.........................................................................................20

Figure 7. Kernel 1 – Decompress Data..........................................................................................22

Figure 8. Kernel 2 – Remove Predictor and Map Data .................................................................22

Figure 9. Kernel 3 – CRC Calculation...........................................................................................22

Figure 10. Software vs. GPGPU Performance ..............................................................................23

Figure 11. Latency .........................................................................................................................25



6

Figure 12. Timing Analysis ...........................................................................................................26

Figure 13. Multiple Host Threads (Performance)..........................................................................27

Figure 14. Multiple Threads (Latency)..........................................................................................28

Figure 15. Multiple Devices and Threads Performance ................................................................30

Figure 16. Latency for Multiple Devices and Threads ..................................................................30

Figure 17. Workstation Results .....................................................................................................31

Figure 18. Transfer Frame Format.................................................................................................33

Figure 19. RS Decoding Performance ...........................................................................................34

Figure 20. RS Decoding Latency...................................................................................................35

Figure 21. RS Time Analysis.........................................................................................................36

Figure 22. Multiple Threads, Multiple Devices RS Decoding ......................................................36

Figure 23. Multiple Host Thread, Multiple Device RS Latency ...................................................37

Figure 24. Workstation Performance.............................................................................................38

TABLES
Table 1. S1070/DL580G5 Goals vs. Results .................................................................................10

Table 2. DMA and Compute Bandwidth as a Function of Host Threads and Devices .................29



7

ACRONYMS

ASIC Application Specific Integrated Circuit 
ASM Asynchronous Symbol Marker
CCSDS Consultative Committee for Space Data Systems
CPU Central Processing Unit
CRC Cyclic Redundancy Check
CUDA Compute Unified Device Architecture
DAS Data Acquisition Subsystem
DMA Direct Memory Access
DOE Department of Energy
EP External Predictor
FPA Focal Plane Array
FPGA Field-Programmable Gate Arrays
FSB Front-Side Bus
GB Gigabyte
GB/s Gigabytes per second                             
GPGPU General Purpose Graphics Processing Unit
HIC Host Interface Card
I/O Input/Output
IOH Input/Output Hub
MB/s Megabytes per second
MCH Memory Controller Hub
MGS Mission Ground Station
NN Nearest Neighbor
PCIe Peripheral Component Interconnect express
PF Previous Frame
QPI Quick Path Interconnect
RS Reed-Solomon 
TF Transfer Frame
SNL Sandia National Laboratories
VHDL VHSIC Hardware Description Language
VHSIC Very High-Speed Integrated Circuit



8



9

1. OVERVIEW 

Using the General Purpose Graphics Processing Unit (GPGPU) to accomplish high-rate Rice 
Decompression and high-rate Reed-Solomon (RS) decoding was explored. Rice Decompression 
and RS fall into a class of algorithms that are currently used in satellite ground communication 
systems implemented at Sandia National Laboratories (SNL). Neither algorithm is inherently 
parallelizable. Common Rice decoder implementations used at SNL include Application Specific 
Integrated Circuits (ASICs) capable of data processing rates up to 80 MB/s and software 
solutions capable of data rates of up to 150 MB/s running on multiple Central Processing Units 
(CPUs)/cores. Common RS decoding implementations at SNL are primarily accomplished in 
VHDL (VHSIC [Very High-Speed Integrated Circuit] Hardware Description Language) code in 
Field-Programmable Gate Arrays (FPGAs) at about 62 MB/s. Although the general wisdom is 
that algorithms heavy in floating point calculations benefit the most from GPGPU 
implementations, we hoped to gain significant improvements in performance for both the Rice 
and RS algorithms using the GPGPU, even though neither algorithm uses any floating point 
arithmetic.

We investigated using both a single GPGPU device implementation and a distributed 
implementation with up to four GPGPU devices for each algorithm. In addition, we also varied 
the number of host threads used to drive the GPGPUs to exploit overlapped GPGPU execution 
and Input/Output (I/O). Performance goals were defined to provide metrics and to keep the effort 
focused. When a given goal was achieved, no further refining of the algorithm or implementation 
was pursued. Goals were chosen for a single GPGPU solution that reflects nearly a doubling of 
current capabilities as described above. For four GPGPU devices, we scaled the goals by a factor 
of approximately three over the single device implementation. 

As seen in Table 1, we exceeded our expectations for Rice Decompression by a factor of three 
for the single device implementation and by nearly 38% for the four-device distributed 
implementation. Also note that for Rice Decompression, no further performance gain was 
achieved when distributing across more than two devices and in effect two, three, and four 
device configurations netted the same performance results. This was determined to be the result 
of saturating the Peripheral Component Interconnect express (PCIe) bus that conveys data 
between the host computer and the GPGPU. For RS, we also exceeded our goals by a small to 
moderate margin.



10

Table 1. S1070/DL580G5 Goals vs. Results

G
oa
l

Re
sul
t

* Two Devices

The benchmark results shown in Table 1 were measured on a Tesla S1070, multi-device 
GPGPU, coupled with an HP DL580G5 server. We also ran both algorithms on two different 
workstations employing two different, inexpensive video graphics cards. Specifically, we looked 
at the NVidia GTX 280 which employs the same GPGPU chip as used by the S1070; and a GTX 
480 based on NVidia’s next generation Fermi Technology. The GTX 280 performed slightly 
better than the S1070 for single GPGPU, single host thread operation. The slight increase in 
performance can be accounted for as a result of the workstation’s improved PCIe performance 
over the DL580G5. The GTX 480 performed twice as well as the GTX 280 and S1070 for single 
device and single host thread operation. We did, however, find limitations in both video graphics 
cards due to driver performance when using more than one host thread.

C:\Users\skzamor\Desktop\SAND Loughry GPGPU Rice  RS update_SZG_edit_20131030.docx#Table1


11

2. TEST PLATFORMS

The test platform for this competency development effort primarily consisted of a Tesla S1070 
and a HP DL580G5 server. We also ran benchmarks on a Core 2 Duo-based workstation with a 
GTX 280 graphics card installed and a Core i7-based workstation with a GTX 480 graphics card 
installed.  

The Tesla S1070 (Figure 1) is a 1U rack-mount chassis containing four GPGPUs, control unit, 
and power supply. Information on the S1070 is available on NVidia’s web site at 
www.nvidia.com. Each GPGPU has 4 GB of dedicated GDDR3 memory with a 512-bit interface 
and can achieve memory access bandwidths to its dedicated memory at rates as high as 102 
GB/s. The S1070 interfaces to the host computer using two Host Interface Cards (HICs). Each 
HIC uses a PCIe switch to access its two connected GPGPUs. 

Figure 1. Tesla S1070
The S1070 allows the two HIC cards to be placed in two completely different hosts, if desired, as 
shown in Figure 2. Although the S1070 HICs support PCIe Gen 2.0 at x16 lanes each, our server 
limited us to PCIe Gen 1 at x8 lanes each. This effectively limited the bandwidth between the 
host and GPGPU to less than 2 GB/s in the aggregate. All of our GPGPU code was developed in 
NVidia’s Compute Unified Device Architecture (CUDA) language, version 3.2.

Figure 2. Tesla Configuration



12

The HP DL580G5 is a high-end server with four Xeon X7460 CPUs running at 2.66 GHz each. 
Each CPU contains six cores for a total of 24 cores. The CPUs interface to the rest of the system 
through Intel’s 7300 series chipset (Figure 3). More information on the chip set can be found at 
www.intel.com. As configured for our tests, the DL580G5 has 16 GB of PC2-5300 DDR2 
memory with a theoretical bandwidth of 21.2 GB/s read and 10.7 GB/s write speeds. As 
mentioned previously, the DL580G5 only supports 8 electrical Gen 1 PCIe lanes. It also appears 
that the physical lanes may be switched, limiting the aggregate bandwidth on the PCIe bus to less 
than 2.0 GB/s. This is investigated further in Section 4.5. 

Figure 3. Intel 7300 Chip Set

The DL580G5 was selected out of convenience, not for its CPU performance. In practice, 
because the GPGPU is burdened with most of the computations associated with the two 
algorithms, a much lower-end workstation with fewer CPUs and better PCIe performance would 
be a better choice. The DL580G5 was running SLSES10 SP2 and the host code was compiled 
using g++. The GPGPU code was compiled using CUDA version 3.2.

We also benchmarked on two different workstations that employ commodity graphics cards and 
Microsoft’s Windows 7 OS (Figure 4). The first system, TAL-2000, is based on a Q6600, 4-core 
CPU running at 3.0 GHz and an Intel X38 chipset. It was configured with 8GB of PC2-5300 
DDR2 memory with a theoretical limit of 10.6 GB/s. The mother board supports a full 16 lane 



13

Gen 2 PCIe slot for the video graphics card (GPGPU). In theory, the PCIe slot should support 8.0 
GB/s, but was measured at 3.1 and 2.6 GB/s read and write speeds respectively with the GTX 
280 installed. NVidia reports that the GTX 280 is capable of 5.2 GB/s data transfer across the 
bus. 

The second workstation, TAL-4000, was based on an Intel Core i7 960, 4-core CPU running at 
3.2 GHz and using the Intel X58 chipset. It was configured with 6 GB of PC3-12800 DDR3 
memory with a theoretical bandwidth of 38.4 GB/s and a GTX 480 graphics card in a full 16 lane 
Gen 2 PCIe slot. However, the Quick Path Interconnect (QPI) limits the Direct Memory Access 
(DMA) bandwidth to 12.8 GB/s between the CPU and the Input Output Hub (IOH). The 
measured bandwidth to the GTX480 card on this workstation was measured at 5.2 and 5.9 GB/s 
read and write speed respectively. Although the Windows 7 driver for these two cards support 
CUDA, it is optimized for game play and does not support the entire feature set of the GPGPU 
compute capability, including simultaneous data transfer and computes.



14

Figure 4. Workstation Overview

The Tesla S1060 and the GTX 280 graphics card use the same basic GPGPU design. Each 
contains 240 scalar processors and 30 multi-processors. The GTX 480 is based on NVidia’s 
newer GPU which was released mid-year 2010. The GTX 480 has 480 scalar processors and 15 
multi-processors. Because of design changes in the multi-processors, the GTX 480 has roughly 
twice the performance of the GTX 280, even though it has half the multi-processors.



15

3. GENERAL PURPOSE GRAPHICS PROCESSING UNIT 
PROGRAMMING MODEL

For Rice Decompression, parallelism is achieved by collecting many compressed packets and 
then decompressing the entire set nearly simultaneously on the GPGPU. Likewise, for Reed-
Solomon decoding, we collect many code blocks and decode them all at once. In modern satellite 
communication systems, data continuously flows; hence, while one block of data is being 
decoded by the GPGPU, another block of data can be accumulated by the host. In the remainder 
of this document, the block of data being accumulated or processed is referred to as a buffer. 
Clearly in both of these cases, Rice and RS, GPGPU device thread divergence is a concern, so 
although we did not expect spectacular performance improvements over the CPU model, we did 
expect moderate improvements.

In general, using a GPGPU for data processing is a five-step process: 

Step 1. Select the device (when multiple devices exist on the same host), allocate device 
memory, copy constant values to the device, and set the device behavioral flags. We commonly 
refer to the GPGPU as the “device” and the host computer as the “host.” Generally, this step is 
only performed once and is designed to prepare the device for computing. 

Step 2. Transfer the block of data (buffer) to be operated on, Rice compressed packets or 
RS code blocks, from host memory to the GPGPU memory. As depicted in Figure 5, for Front-
Side Bus (FSB) based systems such as the DL580G5 and the TAL-2000, this usually involves 
DMA through the Memory Controller Hub (MCH), commonly referred to as the “north bridge.” 
For QPI-based systems such as the TAL-4000, the memory controller is hosted in the CPU and 
thus DMA occurs through the QPI bus and the IOH, as shown in Figure 4. The QPI bus is 
typically much faster than the FSB.

Step 3. Launch one or more kernels sequentially on the device. Each kernel computes 
part of the algorithm using one thread per compressed packet or code block. The GPGPU is 
capable of having thousands of threads in play at once. Thus, thousands of packets or code 
blocks can be operated on in a near simultaneous fashion.

Step 4. This step is very similar to Step 2, except now the results are transferred from the 
device back into the host memory. In the case of Rice Decompression, if one assumes a 3:1 
compression ratio, the size of the data being moved in this step is three times larger than the size 
of the data moved in Step 2. In contrast, for RS, the data moved in this step is small compared to 
the input data size because only the corrected symbols and status need to be transferred back to 
the host. It is also worth mentioning that an alternative to using DMA for memory transfers is a 
method called “zero copy.” Zero copy uses mapped memory as opposed to DMA. Zero copy can 
be useful when the size of the data to be copied from host to device or device to host is relatively 
small.



16

CPU

MCH MB
P

C
Ie

 (8
/1

6)
FS

B

GPGPU Memory

Host Memory

GPGPU

Host

Processors

Figure 5. Host/Device Interface

Step 5.  This last step is simply a branch back to Step 2. While Steps 2 through 4 are 
being performed, the host computer is accumulating the next set of data (buffer) on which to 
operate. 

In practice, Mission Ground Station (MGS) data processing is pipelined within the same host 
server and across multiple host servers and custom hardware. Pipeline processing achieves 
concurrency through functional decomposition with the different functions processing on 
separate CPU threads or hardware. Within the same stage of a processing pipeline, data 
decomposition can be used to achieve further concurrency. For example, if data is down-linked 
on multiple independent channels, each link can be processed separately by different threads or 
hardware in the RS stage. Likewise, if a satellite possesses multiple Focal Plane Arrays (FPAs), 



17

the data from each FPA can be decompressed separately using independent threads or devices. 
This concept of functional and data decomposition can easily be implemented on multiple 
GPGPU devices like the S1070 described above.



18



19

4. RICE COMPRESSION/DECOMPRESSION

Rice compression is an adaptive, noiseless and lossless compression technique developed by 
Robert F. Rice of the Jet Propulsion Laboratory, National Aeronautics and Space Administration. 
Rice compression is also recommended by the Consultative Committee for Space Data Systems 
(CCSDS). A detailed description of Rice compression/decompression can be found in the 
CCSDS Green Book 121.0-B-2 [Ref 1]. As depicted in Figure 6, the first step in compressing an 
image packet is to decorrelate the pixel data and map it into sigma values for entropy encoding. 
In this effort, we looked at data that was compressed using two common decorrelation 
techniques: unit delay decorrelation, commonly referred to as Nearest Neighbor (NN); and 
External Predictor (EP) decorrelation, commonly referred to as Previous Frame (PF). 



20

Run of Zeros

2nd Extension

Fundamental Sequence

K-1 Split

K-2 Split

No Compression

Mapper

+

-

Input Data

Predictor

Select 
Minimum

Compressed 
Data

Figure 6. Rice Compression Algorithm



21

Post decorrelation, the sigma values are compressed using one of 16 different approaches and the 
approach that achieves the greatest compression is selected as the result. In our application, the 
data is compressed 16 pixels at a time. An uncompressed packet always contains exactly 4,096 
15-bit pixels that correspond to a 64X64 pixel image. Therefore, each packet results in 256 
compressed, variable sized blocks that are concatenated to form the compressed packet. Each 
compressed block starts with a 4-bit ID that identifies the compression method selected by the 
entropy encoder to compress that 16 pixel block.

Decompression cannot be performed in parallel on a single packet because there is no way of 
knowing a priori where the 4-bit ID of each block, other than the first, falls in the bit stream. 
Instead, the blocks must be decompressed one at a time and in order, so that the ID of the next 
block can be found in the bit pattern.

4.1. General Purpose Graphics Processing Unit Rice 
Decompression Algorithm

As stated previously, in a real-time MGS, image data will flow continuously, providing an 
opportunity for many compressed packets to be accumulated in a very short period of time. It 
should also be noted that compressed packets generally include a Cyclic Redundancy Check 
(CRC) at the end of the packet body that was calculated prior to compression. The CRC provides 
a quick check of the integrity of the resulting packet after decompression, i.e., the calculated 
CRC of the resulting uncompressed packet should match the original CRC calculated before 
compression and down-linking. In our current ground systems, we use both hardware and 
software for decompression. We also calculate the CRC and do some simple mappings of the 
data (such as rotations and flips) in the same decompression hardware or software module to 
exploit the hardware performance or generous CPU cache in the case of software. In order to 
make accurate comparisons between existing hardware or host software and GPGPU software, 
we included the CRC and mapping as part of the GPGPU algorithm.

Figure 7, Figure 8, and Figure 9 show how the three kernels used by the GPGPU algorithm first 
decompress the packet (recovering the sigma values that went into the entropy encoder), then 
apply the predictor, map the data, and finally calculate the CRC. The first kernel depicted in 
Figure 7 is used to decompress the data and utilizes one device thread for each compressed 
packet. The more packets passed over in a single buffer transfer, the more threads the device can 
use to gain parallelism. The next kernel depicted in Figure 8 removes the predictor when in EP 
decorrelation mode. In EP mode, the packets must be processed in the exact order in which they 
were compressed because the current frame was subtracted from the previous frame before 
compression. So, in this second kernel, the threads process the packets in parallel with exactly 
4,096 device threads, one for each pixel position. As the predictor is removed from each pixel, 
the pixel is then mapped accordingly. This will be the mapped packet that will be transferred 
back to the host. Finally, the third kernel depicted in Figure 9 calculates the CRC. One device 
thread per packet is used because the CRC calculation, like the decompression calculation, is not 



22

parallelizable within a packet. At the completion of the CRC calculation, the CRC result is 
appended to the mapped data packet so that the host can verify its correctness.

Thread 0

Thread 1

Thread N

Thread 2

...

Compressed Packets Uncompressed Packets

Mapped Packets

Figure 7. Kernel 1 – Decompress Data

. ..

Th
re

ad
 2

Th
re

ad
 0

Th
re

ad
 1

Th
re

ad
 4

09
5

Compressed Packets Uncompressed Packets

Mapped Packets

Figure 8. Kernel 2 – Remove Predictor and Map Data

Thread 0

Thread 1

Thread N

Thread 2

...

Compressed Packets Uncompressed Packets

Mapped Packets

Figure 9. Kernel 3 – CRC Calculation



23

4.2. Rice Decompression Software, Central Processing Unit vs. 
General Purpose Graphics Processing Unit

The Rice Decompression Algorithm was implemented in CUDA and its performance was 
compared to an existing CPU software implementation. Figure 10 shows the performance results 
for both the GPGPU and CPU implementation for NN and EP modes. These tests were run using 
the DL580G5 and S1070 Tesla processing configuration. The compressed data was read from a 
file into local memory. The data was contrived to have a compression ratio of about 3:1 for both 
the NN and EP data sets. 

First, the CPU software algorithm was used to decompress the data, including the mapping and 
CRC calculation. The CPU software algorithm was timed for various numbers of packets per 
buffer. As little as 128 packets to as many as 4,096 packets per buffer were benchmarked. As 
expected, the number of packets processed per buffer had little effect on the CPU software 
performance because each packet is always processed one at a time (no parallelism). The rate in 
millions of bytes per second (MB/s), as shown in the graph in Figure 10, is the rate at which the 
uncompressed packet data was leaving the algorithm. The input rate of compressed packets is 
one-third the output rate. The CPU software was able to decompress the data at a rate of 
approximately 69 MB/s and 62 MB/s for NN and EP modes respectively.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

100

200

300

400

500

600

CPU EP CPU NN

GPU EP GPU NN

Basic EP/NN Rates

Packets/Buffer

R
at

e 
(M

B
/s

)

Figure 10. Software vs. GPGPU Performance

Next, the same benchmark was repeated with the CUDA implementation and GPGPU. In both 
cases, the host was running a single host thread. The results were timed for the same numbers of 
packets per buffer (128 – 4,096). The CPU software results were compared to the GPGPU results 
to verify the correctness of the CUDA code. Additionally, the CRCs were also used to verify 



24

correctness. As expected, the performance of the CUDA algorithm increased rapidly with the 
number of packets per buffer. This is a direct result of the fact that two of the three kernels 
(decompression and CRC) used more threads with increasing number of packets per buffer 
creating improved parallelism. Eventually, the GPGPU becomes fully occupied with threads and 
no further increases in performance are realized with increasing packet counts. The CUDA 
implementation achieved 546 MB/s and 530 MB/s for NN and EP modes, respectively, at the 
higher packet counts.

In any real-time processing system, latency must be a consideration. As previously discussed, in 
order to exploit the massive number of near simultaneous executing threads available in the 
GPGPU, data packets must be aggregated (buffered) before passing them to the GPGPU. The act 
of accumulating packets introduces latency into the processing pipeline. As demonstrated in 
Figure 10, the larger the number of packets per kernel execution, the faster the packets can be 
processed. However, for a given data rate, the larger the number of packets accumulated, the 
greater the latency. In an ideal configuration, the amount of time required to accumulate N 
packets would be identical to the amount of time required by the GPGPU to process N packets. 
Hence, the minimum latency introduced for this ideal configuration can be easily calculated as 
twice the amount of time required to accumulate the N packets required to achieve the desired 
performance level.  

The graph in Figure 11 shows the minimum latency in terms of milliseconds vs. the rate at which 
the data is being processed as reflected in Figure 10. Latency increases rapidly, as the number of 
packets per buffer approaches 4,000, corresponding to performance in the area of 500 MB/s. 
This is due to performance not increasing as rapidly as the number of packets per buffer when 
the device starts to become fully occupied. Therefore, increasing the number of packets per 
buffer beyond approximately 4,000 can cause latency to increase without any gain in 
performance for this device (S1070). The buffer size at which this occurs will depend upon the 
GPGPU being used, as will be described in Section 4.5.



25

0 100 200 300 400 500 600
0

20

40

60

80

100

120

140

EP NN

Basic GPU Latency

Rate (MB/s)

La
te

nc
y 

(m
S)

Figure 11. Latency

4.3. Timing Analysis of the Basic Compute Unified Device 
Architecture Rice Decompression Algorithm

The plots in Figure 12 show a detailed timing analysis of data transfers to and from the device. 
This figure also shows the time spent in computing by each of the three kernels described in 
Section 4.1 when decompressing packets in EP mode. The time in seconds represents the time 
required to process a total of approximately 128,000 packets. The number of packets per buffer 
was varied as before in the GPGPU performance tests (Figure 10). As displayed in the Timing 
Analysis graph, the total transfer time of the data remained relatively constant both to and from 
the device regardless of the size of the buffer being transferred. In other words, transferring 
many smaller buffers takes about the same amount of time as transferring fewer, larger buffers 
provided the total number of transferred bytes is the same. This will always be true provided the 
smallest buffers are large enough to allow efficient DMA transfers. It is notable that the transfer 
time from the device to host is roughly three times larger than the time it takes to transfer from 
the host to device. This is due primarily to the 3:1 compression ratio of the data. It is also notable 
that the data transfers back and forth to the device consume about 45% of the total algorithm 
time. As demonstrated later in Section 4.4, the transfer time will be hidden by using multiple 
host thread to overlap transfers and computes.

The time required by the Predictor/Rotate (map) kernel is also relatively constant with increasing 
packets per buffer. This is because the number of device threads in this kernel is always the same 
(4,096), regardless of the number of packets per buffer, as previously described in Section 4.1. 



26

Finally, the decompression and CRC kernel show decreasing time as the number of packets per 
buffer increases resulting from the increased parallelism. The most interesting fact elucidated by 
this figure is that the total time for the three kernels to perform the compute at high packet counts 
is very close to the total time required to transfer the data back and forth between the device and 
host (1060 mS vs. 884 mS). This means that 45% of the time the GPU is idle, waiting for the 
data transfers to complete. Although CUDA provides a mechanism for overlapping transfers and 
computes from the same host thread using streams, they cannot guarantee the execution order. 
This could cause the packets to be processed out of order, which would break the EP model. 
Another approach is to use multiple host threads. This requires that the overall algorithm 
maintains a state to ensure that a packet from a given location in the image always gets processed 
by the same host thread. We address host multithreading algorithms in the next Section 4.4. It is 
important to note that since the initial testing has been completed, newer versions of CUDA and 
newer GPGPU architectures have eliminated the requirement that a device context be confined to 
a single host thread allowing overlapped transfers and computes.

Basic Detailed Breakdown EP

0

1

2

3

4

5

6

7

8

9

10

0 1000 2000 3000 4000 5000

Packets/Buffer

Ti
m

e 
(S

ec
on

ds
)

Host to Dev Xfer
Decomp Compute
Predictor/Rotate
CRC Compute
Dev to Host Xfer

Figure 12. Timing Analysis

4.4. Multiple Host Threads for Rice Decompression
By using more than one host thread, we anticipated overlapping data transfers with computes so 
that the GPGPU could be fully utilized. While one host thread is waiting for the device to 
complete the computations, another host thread is waiting for its data to complete the DMA 
transfer. As mentioned previously, each host thread has its own context on the GPGPU device so 



27

any data sharing between host threads must be done on the host. Because predictor memory is 
maintained on the device for efficiency, this requires that a packet from a given location on the 
image must always be processed by the same host thread from one frame to the next. 

Figure 13 shows the result for the Tesla S1070 and DL580G5 using one GPGPU device, and 
anywhere from one to five host threads. These results are for EP mode only. We dropped the NN 
mode at this point because EP was the more taxing of the two in terms of performance. As 
Figure 13 illustrates, performance nearly doubles when going from one host thread to two (510 
MB/s to 900 MB/s). Based on the results in Figure 12, this is approximately what is expected if 
the 45% of the time used by Host to Device and Device to Host transfers can be hidden by 
multiple host threads  (510 MB/s / 0.55 = 927 MB/s). Also note that the single-threaded 
performance for this run is lower than that previously reported in Figure 10 (510 MB/s vs. 530 
MB/s). In this particular case, the code has been reconfigured so the Rice decompression is being 
performed in a stage of a pipeline, as it would be in a real MGS application. Data is being fed to 
each host thread by a previous stage and the data is then being consumed by another stage at the 
output. The reduction in performance is due to the overhead associated with filling and emptying 
the pipeline. As displayed in Figure 13, increasing the number of host threads beyond two does 
not improve aggregate performance. The GPGPU is fully occupied with two host threads and 
adding additional threads only increases latency. As seen in Figure 14, a single host thread 
provides the best latency for a needed rate below 500 MB/s; however, two threads are required to 
push the performance much beyond 500 MB/s. The next test will focus on using multiple 
GPGPUs with one or two host threads per GPGPU since the Tesla S1070 contains four GPGPUs.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

100

200

300

400

500

600

700

800

900

1000

1 HT 2 HT

3 HT 4 HT

5 HT

One GPU, Multiple Host Threads  (Rates)

Packets/Buffer

R
at

e 
(M

B
/s

)

Figure 13. Multiple Host Threads (Performance)



28

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

350

400

1 HT

2 HT

3 HT

4 HT

5 HT

One GPU, Multiple Host Threads (Latency)

Rate (MB/s)

La
te

nc
y 

(m
S)

Figure 14. Multiple Threads (Latency)

4.5. Multiple Host Threads, Multiple Devices for Rice 
Decompression

One might incorrectly predict that performance would directly scale with the number of GPGPU 
devices employed. As described in Section 2, the S1070 uses two HICs to connect the four 
GPGPUs to the host. Although this provides four times the number of devices for computing, in 
theory, it would only provide twice the PCIe bandwidth because each of the two GPU pairs must 
share a single PCIe slot in the host. Hence, one would expect that running two host threads per 
device on two devices connected through separate HIC cards would at least double the aggregate 
throughput to 1.8 GB/s (2 x 900 MB/s). In practice, we were not able to get beyond 1.377 GB/s 
for two, or even more, devices. In an attempt to understand this, we conducted tests to see how 
both PCIe bandwidth and compute bandwidth scaled with host thread count and device count. 
The results are shown in Table 2. As can be seen from the table, compute performance scaled 
directly with the number of GPGPU devices used, whereas DMA bandwidth did not. It appears 
DMA bandwidth in the aggregate never exceeded what would be expected from a single PCIe x8 
Gen 1 slot. One might deduce that the server is using a switch to share the PCIe lanes between 
the two HIC cards. It could also mean that the Tesla S1070 driver or the server hardware is 
serializing the data transfers. Using the data in Table 1, we can predict the maximum rate with 
multiple GPUs for Rice Decompression. Given that the compression ratio is 3:1, 25% of the 
transfer time is from host to device and 75% is from device to host. 



29

Applying the aggregate data rates from Table 2, the expected maximum transfer rate is 1,395 
MB/s, (0.25x1607 MB/s + 0.75x1948 MB/s). This assumes that the host-to-device and device- 
to-host transfers are also serialized. This value agrees very well with the observed result of 1.377 
GB/s as seen in Figure 15 which displays two threads and two devices.

Table 2. DMA and Compute Bandwidth as a Function of Host Threads and Devices

Ho
st 
to 
De
v
De
v 
to 
Ho
st
Ke
rn
el

Devices are represented by the numbers 0 through 3 in the legend for Figure 15. For each device 
the number of threads is indicated by the number of times the device ID is repeated. For 
example, “0_0_2_2” indicates 2 host threads using device 0 and two host threads using device 2. 
Likewise, “0_1_2_3” indicates four threads, one thread running on each device, 0-3. Adding 
additional devices beyond two did not improve performance due to the PCIe bus limitation 
described earlier. The data in Figure 16 indicates that below 900 MB/s, one host thread running 
on each of four devices, “0_1_2_3” gave the lowest latency, while above 900 MB/s two host 
threads on device 0 and two host threads on device 2 gave the lowest latency at “0_0_2_2”.

C:\Users\skzamor\Desktop\SAND Loughry GPGPU Rice  RS update_SZG_edit_20131030.docx#Table2


30

Multiple GPU, Multiple Threads (Rates)

0

200

400

600

800

1000

1200

1400

1600

0 1000 2000 3000 4000 5000

Packets/Buffer

R
at

e 
(M

B
/s

)

0_1
0_1_2
0_1_2_3
0_0_1_1
0_0_2_2
0_0_1_1_2_2
0_0_1_1_2_2_3_3

Figure 15. Multiple Devices and Threads Performance

Multiple GPU, Multiple Thread

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500

Rate (MB/s)

La
te

nc
y 

(m
S)

0_1
0_1_2
0_1_2_3
0_0_1_1
0_0_2_2
0_0_1_1_2_2
0_0_1_1_2_2_3_3

Figure 16. Latency for Multiple Devices and Threads



31

Figure 17 shows the results of running the same GPGPU code, but with minor changes to the 
host code since some changes were required to run on Windows 7 on the two workstations. Only 
single-device experiments were run because the two workstations only contain one GPGPU 
each. The GTX 280 uses the same GPGPU chip as the Tesla S1070. The GTX 280 workstation 
outperformed the Tesla in the single-threaded case (707 MB/s vs. 510 MB/s) because of the 
improved PCIe x 16 generation 2 bus. Transfer rates between the GPGPU and host on the TAL-
2000 workstation nearly doubled the measured transfer rates of the DL580G5 server and S1070.

0 1000 2000 3000 4000 5000 6000 7000
0.000

100.000

200.000

300.000

400.000

500.000

600.000

700.000

800.000

900.000

1000.000

1100.000

Tesla_0

Tesla_0_0

GTX_280_0

GTX280_0_0

GTX480_0

GTX_480_0_0

Rice Decompression EP

Packets/Buffer

R
at

e 
(M

B
/s

)

Figure 17. Workstation Results

The GTX 480 workstation performed even better compared to the GTX 280 and S1070 for a 
single threaded operation (952 MB/s vs. 707 MB/s vs. 510 MB/s, respectively). The TAL-4000 
workstation achieved nearly 6 GB/s transfer rates on the PCIe bus and according to NVidia, the 
GTX 480 has about twice the processing performance of a single S1070 GPGPU device. 
Interestingly, both the GTX 280 and GTX 480 dropped slightly in performance when using two 
host threads. This is likely due to a limitation of the GTX drivers not allowing overlap between 
transfers and computes.



32



33

5. REED-SOLOMON

Reed-Solomon codes are non-binary, cyclic error correcting codes invented by Irving S. Reed 
and Gustave Solomon in 1960. They are one of the channel coding techniques recommended by 
the CCSDS Green Book 101.0-B-6 [Ref. 2]. A common RS configuration used in space 
communication systems is the 255/223 code block with 8 bit symbols. This format codes 223 
symbols with 32 parity symbols to form a code block of 255 symbols. This configuration allows 
for the correction of up to 16 symbols per code block. Generally data on a telemetry link will be 
encapsulated into Transfer Frames (TF). A TF can contain up to 8 code blocks. 

To enhance burst error recovery, the code blocks are formed by using every nth byte, where n is 
the number of code blocks in the TF and is commonly referred to as the interleave. If there are 
not a sufficient number of symbols to complete all of the n code blocks, virtual fill can be used 
by padding the data in each block with zeros, as shown in Figure 18. The virtual fill is not 
transmitted to the ground; it is understood to be there and the ground decoder fills in the zeros 
before decoding. By using every nth byte of the message to form the code block data, burst errors 
tend to be distributed across many code blocks allowing for easier correction of data errors. With 
an interleave of 8, this configuration can correct a burst error of as much as 1,024 bits (16 
symbols/block x 8 bits/symbols x 8 blocks).

Data

Code 
Block

Code 
Symbols

Code 
Block

Code 
Block

Code 
Block

Code 
Block

S0 S5 S10 S215 zero zero zero C10 C5 C155

Figure 18. Transfer Frame Format

For our experiments, we chose an interleave of 8 and a virtual fill of 0, giving us a TF size of 
2,040 bytes. To match as closely as possible to a real-life decoder, we also included the four 
byte-Asynchronous Symbol Marker (ASM) in our data sets. The ASM marks the beginning of 
every frame. The total frame size is 2,044 bytes, including the ASM. The CPU code we used is 
based on Phil Karn’s Reed-Solomon software, readily available on the internet under GNU 
General Public License. In our implementation, we pass a large number of TFs at once to the 



34

GPU, similar to what we did for Rice Decompression. The GPU uses 8 device threads per frame 
to process each of the 8 code blocks. Processing is completed using a single kernel. The kernel 
first calculates the 32 syndromes for each code block. If all the syndromes equate to zero, then 
no errors were detected and the process is complete. If one or more of the syndromes is non-zero, 
then two additional steps must be accomplished – error locating and error calculation. The error 
location and error calculation are conducted within the same kernel that calculated the 
syndromes. The final step involves transferring the frame data back to the host along with a 
status vector that indicates the number of corrections that occurred for each code block, or if a 
code block was not correctable, i.e., contained more than sixteen errors. 

5.1. Reed-Solomon Decoding Software vs. General Purpose 
Graphics Processing Unit

We conducted the RS tests in a manner similar to the Rice Decompression tests. We began with 
a single host thread and compared the software CPU algorithm with the CUDA algorithm 
running on the GPGPU. We also started with the same base configuration using the DL580G5 
and the Tesla S1070. Each method was timed as a function of the number of frames processed in 
a single buffer. Each TF frame contains 8 code blocks so the total device threads used per kernel 
invocation is 8 times the number of TFs. As seen in Figure 19, the device decoding performance 
increases rapidly with the number of TF frames. In the case of the CPU software, the 
performance remains independent of the number of TFs, as expected. Each code block in the TF 
contained the maximum number of errors, which is 16. In the GPGPU tests, data rates peaked at 

0 500 1000 1500 2000 2500 3000 3500
0

20

40

60

80

100

120

Device Decode SW Decode

RS Decode Rates (16 Errors/Code Block)

Frames/Buffer

R
at

e 
(M

B
/s

)

Figure 19. RS Decoding Performance



35

nearly 107 MB/s, while the CPU tests performance was constant at about 4 MB/s. As with Rice 
Decompression, latency is an important factor when accumulating data before passing it to the 
GPGPU. Figure 20 shows the GPU latency, in milliseconds, vs. processing rate in MB/s for 
GPGPU RS data shown in Figure 19. In the useful range of performance, 4 MB/s to 107 MB/s, 
the latency is relatively low at 20 to 40 milliseconds. This corresponds from as little as 32 TFs to 
as many as 1,376 TFs per buffer. In practice, a spacecraft would use multiple links, with each 
one operating in the tens of MB/s to downlink data. Because there is no interdependence between 
the TFs on the same link or other links relative to RS decoding, the TFs from all links can be 
aggregated for processing, making this technique very attractive.

0 20 40 60 80 100 120
0

20

40

60

80

100

120

140

Device Decode Latency (16 Errors/Code Block)

Rate (MB/s)

Ti
m

e 
(m

S)

Figure 20. RS Decoding Latency

5.2. Timing Analysis of the Basic CUDA RS Decoding Algorithm
Although the Reed Solomon CUDA decoding algorithm only uses a single kernel, it is still 
useful to look at how compute time for the kernel compares to data transfer time. In this first 
attempt at using the GPGPU to perform the decoding, we actually copied the entire corrected 
data buffer back to the host, as well as a status field to indicate the number of symbol corrections 
or if the frame had any uncorrected errors. Since even under the worst circumstance, no more 
than 16 out of every 255 symbols could be corrected, an obvious trade would be to only transfer 
back the symbols that require correction, perhaps using “zero copy.” However, Figure 21 shows 
that the kernel compute time is many times greater than the time required to transfer the data 
back and forth to the host. In fact, with 1,376 frames per buffer, the compute requires 6.2 times 
the time required to complete both transfers. As a result, we determined that pursuing any 
optimization to transfer only the corrected symbols would not provide significant improvements 
in overall performance. 



36

0 500 1000 1500 2000 2500 3000 3500
0

50

100

150

200

250

300

350

400

Host to Device Compute

Device to Host

Device Decode Time Analysis (16 Errors/Code Block)

Packets/Buffer

Ti
m

e 
(u

S)
 / 

Fr
am

e

Figure 21. RS Time Analysis

5.3. Multiple Host Threads, Multiple Devices for Reed-Solomon 
Decoding

Based on the results from Section 5.2, RS is compute bound and should not benefit significantly 
from overlapped I/O; however, it should scale well with increasing device counts. Figure 22 
validates this premise.  

RS Decoder Rates, Multi-Thread, Multi-Device (16 Errors/CB)

0

100

200

300

400

500

600

0 500 1000 1500 2000 2500 3000 3500

Frames/Buffer

R
at

e 
(M

B
/s

) _0_
_0_0_
_0_0_1_1_
_0_0_1_1_2_2
_0_0_1_1_2_2_3_3_

Figure 22. Multiple Threads, Multiple Devices RS Decoding



37

For the multi-threaded RS benchmarks, the software was restructured to make it more like a 
stage in a pipeline, just as we did for the Rice Decompression multi-threaded code. As shown in 
Figure 22, when going from one thread on device 0, “_0_”, to two host threads on device 0, 
“_0_0_”, it made little difference in performance – 125 MB/s vs. 107 MB/s. As also predicted, 
increasing the number of devices causes the performance to increase proportionally. 
Furthermore, in Figure 23, it is clear that increasing from one host thread to two host threads 
doubles the latency; whereas, adding devices does not impact latency hardly at all.

RS Decode Multi-Device/Thread (16 Errors/CB)

0

50

100

150

200

250

0 100 200 300 400 500 600

Rate (MB/s)

Ti
m

e 
(m

S)

_0_
_0_0_
_0_0_1-1_
_0_0_1_1_2_2_
_0_0_1_1_2_2_3_3

Figure 23. Multiple Host Thread, Multiple Device RS Latency

The case where one host thread is run on each device is not shown in the figures, but was 
benchmarked. In that instance, performance peaks at 350 MB/s, as opposed to 494 MB/s when 
two host threads are used on each device. It appears that multi-threading of multiple devices can 
offer about a 41% improvement in performance as opposed to only a 16% improvement when 
using a single multi-threaded device. It is not clear at this point, why multiple host threads 
provide such an improvement in performance when using multiple devices.  

Finally, we looked at using two different workstations to run the same CUDA GPGPU code, 
making slight changes to the host code to allow it to run under Windows 7. As displayed in 
Figure 24, and as expected, the GTX 280 performed very similarly to the two host thread, single 
device result from the DL580G5 and Tesla S1070 combination. The GTX 480 workstation, on 
the other hand, was able to reach 289 MB/s with a single thread, more than double the 125 MB/s 
on the Tesla S1070 using two threads and one device. Again, this is primarily due to the 
doubling in performance of NVidia's Fermi architecture over the previous Tesla architecture. 
Also noteworthy is the peak in performance at 800 through 960 frames per buffer in the GTX 
480 workstation, two host threads, benchmark, “GTX480_0_0”. The GTX 480 has the ability to 



38

run up to 16 kernels simultaneously if they fit in the device. It appears that at this “sweet spot,” 
the two host threads are sharing the GPGPU, running both of their kernels simultaneously.

0 500 1000 1500 2000 2500 3000 3500
0

50

100

150

200

250

300

350

Tesla_0

Tesla_0_0

GTX280_0

GTX280_0_0

GTX480_0

GTX480_0_0

Reed Solomon (16 Sym Err/CB)

Frames/Buffer

R
at

e 
(M

B
/s

)

Figure 24. Workstation Performance



39

6. CONCLUSION

Our results show that the GPGPU, in the case of Rice Decompression and Reed Solomon 
decoding, has considerable potential for performing satellite communication Data Signal 
Processing. The GPGPU showed significant performance increases over traditional techniques 
with minimal increases in latency. We demonstrated that even commodity graphics cards like the 
GTX 280 and GTX 480, running on relatively low-end workstations, were capable of 
outperforming traditional firmware and software based solutions. In addition, GPGPU solutions 
can offer 20-times to 100-times reduction in cost depending on the GPU solution selected. For 
example, a 50 MB/s firmware RS solution can cost $50K, compared to a $2.3K C2050, single 
GPU Tesla processing or a $500 GTX 480 solution that can both provide in excess of 100 MB/s.

We demonstrated that when designing a GPGPU based system, it is very important to consider 
I/O bandwidth, especially in the case of Rice Decompression. The PCIe bus DMA bandwidth on 
the DL580G5 was shown to be the limiting performance factor when implementing the Rice 
algorithm on multiple GPGPUs. Not considered in our experiments was the added burden of 
additional I/O from other devices in the host. There obviously needs to be some I/O associated 
with bringing the data into the host and passing results on to other Data Processing Subsystems. 
Because the memory bus, FSB, and QPI are all involved in I/O, it may be that one of them would 
be the bottleneck in a real Data Acquisition Subsystem (DAS) front end as opposed to the 
GPGPU. 

Although we were able to demonstrate significant performance improvement using multiple 
GPGPUs, in all cases, a single GPGPU was able to exceed our current data rate requirements by 
a factor of at least two. It is unlikely that satellite downlink requirements will grow at a faster 
pace than GPGPU technology. Therefore, it may be practical to assign multiple functions to the 
same GPGPU. For example, one GPGPU may be able to process both the Reed Solomon 
Decoding and the Rice Decompression. It may also be useful to share a four-GPGPU Tesla 
processing between two hosts, one running the DAS front end and the second running parts of a 
second stage image processing system. For lower throughput requirements, it may be useful to 
consider lower-end versions of the GPGPU, either in terms of commodity GeForce (GTX) cards 
or Nvidia’s Quadro FX series cards.



40



41

7. REFERENCES

1. Lossless Data Compression. Recommendation for Space Data System Standards, CCSDS 
121.0-B-2. Blue Book. Issue 2. Washington, D.C.: CCSDS, May 2012. 

2. Telemetry Channel Coding.  Recommendation for Space Data System Standards, CCSDS 
101.0-B-6. Blue Book. Issue 6. Washington, D.C.: CCSDS, October 2002.



42

DISTRIBUTION

1 MS0576 Feddema, John T 05521

2 MS0567 Loughry, Thomas 05531

1 MS0899 Technical Library 09536 (Electronic Copy)



43



44




